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Millennium mini-review

Recent advances in research on multistage
tumorigenesis

A Compagni and G Christofori

Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria

Summary Tumour development is a multi-step process during which genetic and epigenetic events determine the transition from a normal
to a malignant cellular state. In the past decade, extensive effort has been made not only to define the molecular mechanisms underlying
progression to malignancy but also to predict the development of the disease and to identify possible molecular targets for therapy. Common
to most tumours, several regulatory circuits are altered during multistage tumour progression, most importantly, the control of proliferation, the
balance between cell survival and programmed cell death (apoptosis), the communication with neighbouring cells and the extracellular matrix,
the induction of tumour neovascularization (angiogenesis) and, finally, tumour cell migration, invasion and metastatic dissemination.
De-regulation of each of these processes represents a rate-limiting step for tumour development and, hence, has to be achieved by tumour
cells in a highly selective manner during tumour progression.

In this review we summarize recent advances in cancer research that have provided new insights in the molecular mechanisms underlying
the transition between one tumour stage and the next and into their concerted action during tumour progression. Cultured human tumour cell
lines as well as transgenic and knock-out mouse models of tumorigenesis have been instrumental in these experimental approaches.
© 2000 Cancer Research Campaign
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PROLIFERATION CONTROL

Cancer cells bear an indefinite proliferative capacity being ab
elude the commitment to terminal differentiation and quiesce
that normally regulate tissue homeostasis in the organism
achieve this property, tumour cells become independent 
external growth stimuli. For example, glioblastoma and sarc
cells produce their own growth factors, (PDGF) and transform
growth factor α (TGF-α) respectively, that are normally produc
by stromal cells (Fedi et al, 1997). Similarly, melanoma c
produce high levels of fibroblast growth factor 2 (FGF-2) and
dependent on this growth factor for proliferation (Becker et
1989). On the other hand, the signalling pathways that
involved in the transduction of mitogenic stimuli are often con
tutively activated in tumour cells, either by overexpression o
mutation of signal transduction molecules. Examples are the
regulated expression of growth-factor receptors, such as epid
growth factor (EGF) receptor or HER-2/neu (Yarden and Ullr
1988). Moreover, tyrosine-kinase receptors, such as EGF rec
are frequently found mutated or truncated in a way that they
constitutively active independently from ligand binding (F
et al, 1997). Finally, 25% of human tumours present activa
mutations in ras, resulting in persistent signal transduction via
MAP kinase pathway, the PI-3 kinase pathway, and possibly o
downstream effector pathways. Nonetheless, the transfor
potential of ras often depends on the cell type and possibly o
expression levels. For example, in primary cells introduction o
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activated form of ras or constitutive activation of the Raf/M
kinase pathway induces cell senescence instead of prolifer
(Serrano et al, 1997; Lin et al, 1998; Zhu et al, 1998). In cont
in tumour-prone INK4a-deficient mice expression of an activa
Ha-ras is sufficient to induce melanoma formation (Chin et
1999b). Notably, the maintenance of the transformed stat
dependent on ras activity, since tumour growth is reversed w
expression of the oncogene is abolished. Similarly to ras, in
tion of c-myc expression in skin or T lymphocytes leads
neoplasia in a reversible fashion (Felsher and Bishop, 1
Pelengaris et al, 1999). These experiments indicate that the
activation of an oncogene can instruct cells to proliferate 
prevent them from differention, growth arrest, or apopto
Nonetheless, tumour cells seem to retain the capability
returning to normal regulatory responses, when the oncoge
inactivated. In contrast to these results, SV40 T antigen-med
transformation of pancreatic β-cells could not be reversed after
certain time point (Ewald et al, 1996). These experiments so
questions about the number and nature of additional gene
epigenetic changes that render tumour cells irreversibly malig

Most signal transduction pathways directly or indirectly aff
cell cycle regulation, and tumour cells achieve the capabilit
indefinitely proliferate also by directly de-regulating cell cy
control. Such events mainly involve functional changes in 
tumour suppressor retinoblastoma (pRb) and components th
affected by its function. In many cancer types and experime
tumours, pRb itself is disabled, for example by mutation
deletion of the gene or by interaction with viral oncoprote
(SV40 T antigen, human papilloma virus E7, adenovirus E1
Alternatively, the function of molecules that act in the p
pathway are frequently impaired. For example, the gene fo
cyclin dependent kinase (cdk)-inhibitor p16 is often mutated
1
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2 A Compagni and G Christofori
lost, while cyclin D1 and cdk4 are overexpressed (Chin e
1998). These changes allow cancer cells to enter the cell cyc
maintain its progression and to escape growth-arrest signals.

A novel pathway for the onset of tumour cell proliferation h
recently been discovered by studying the function of the tum
suppressor adenomatous polyposis coli (APC), mainly in c
cancer and melanoma development. APC is mutated in a he
tary form of colon cancer, familial adenomatous polyposis (FA
and in sporadic forms of colon cancer which invariably lead
hyperproliferation of colon crypt cells and to the formation
polyps (Kinzler and Vogelstein, 1996; Polakis, 1997). It has b
demonstrated that APC plays a central role in Wnt signal
Among several other proteins APC binds β-catenin and exposes 
to glycogen synthase kinase 3β (GSK3β) which phosphorylates
β-catenin and earmarks it for ubiquitination and degradation
the proteasome pathway. In case APC function is lost, β-catenin
accumulates in the cytoplasm. A subset of β-catenin is imported
into the nucleus where it binds members of the LEF-1/TCF t
scription factor family and activates transcription of target ge
(Bullions and Levine, 1998; Eastman and Grosschedl, 19
including c-myc and cyclin D1 (He et al, 1998; Shtutman et
1999; Tetsu and McCormick, 1999). These results revealed
long awaited molecular connection between the loss of A
function and tumour cell proliferation. The same outcome, 
up-regulation of cyclin D1 and c-myc and thus the induction
proliferation, is achieved in melanoma cells by mutations
β-catenin that render it resistant to phosphorylation by GSKβ.
This results in constitutively up-regulated β-catenin/TCF-medi-
ated transcriptional activity (Korinek et al, 1997; Morin et 
1997; Rubinfeld et al, 1997).

SURVIVAL SIGNALS

The activation of oncogenes, such as ras and c-myc, not 
induces proliferation and transformation but also an apop
signal mediated by the tumour suppressor p53. The conne
between proliferation and the induction of apoptosis by p53
been recently elucidated (Sherr, 1998). Up-regulated express
c-myc induces the expression of p19/ARF which subseque
binds and inactivates mdm-2, a proto-oncogene that mediate
degradation of p53 (Zindy et al, 1998). Stabilization and accu
lation of p53 results in transcriptional activation of several 
target genes, including the cell cycle inhibitor p21, the apopt
inducer bax and several other genes that are known to direc
indirectly induce apoptosis. Moreover, tumour cell apoptosi
also frequently induced by up-regulated expression of Fas li
which in turn binds to Fas receptor expressed on tumour 
(Hueber et al, 1997). The apoptotic response to unsched
proliferation possibly constitutes a general defence mechanis
prevent transformation (Sherr, 1998). This notion has not 
given further justification to the high percentage of p53 mutat
found in human cancer, but also has emphasized the importan
escaping apoptosis for tumour growth. Tumour cells freque
up-regulate the expression of anti-apototic genes, such as bc
counteract induction and execution of apoptosis (Jaattela, 1
Alternatively, many tumour types acquire the expression of gro
factors, such as IGFs and PDGFs, which act as survival sig
Growth factor-mediated survival has been first demonstrate
vitro by transformation of fibroblasts; c-myc-expressing fib
blasts rapidly die upon serum-starvation and are rescued 
apoptosis by a number of growth factors, including IGFs, PD
British Journal of Cancer (2000) 83(1), 1–5
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and FGFs (Harrington et al, 1994). In vivo, the role of IGF-II a
survival signal has been demonstrated in a transgenic m
model of β-cell carcinogenesis (Christofori et al, 1994). IG
mediate survival by binding their cognate receptor, the IG
receptor, and the subsequent activation of PI-3 kinase 
PKB/Akt (Downward, 1998; Baserga, 1999). Curiously, PTEN
major tumour suppressor gene that is mutated in a large fracti
human cancer types, is able to impair survival factor func
(Ali et al, 1999). PTEN, as a bifunctional phosphatase, is ab
dephosphorylate both phosphoserines on proteins and p
patidylinositol phosphates, thereby directly counteracting P
kinase activity and thus the anti-apoptotic function of PKB/A
(Stambolic et al, 1998).

SENESCENCE

Growth inhibition and apoptosis are not the only mechanisms
counteract tumour progression. Cells have also develope
device, based on their telomere length, to count the number o
doublings. Normal cells, after a limited number of divisio
(60–70 for human cells) enter crisis and, as a result, arrest in
cycle and enter a senescent state. Telomerase, the enzyme 
responsible to maintain proper telomere length, is not activ
normal somatic cells, however, its activity is found to be up-re
lated in approximately 80% of cancer cells (Holt and Shay, 19
prolonging their life span and allowing them to circumvent cr
and senescence (Bodnar et al, 1998). This concept is best 
trated by experiments in which tumour-prone INK4a-defici
mice were crossed with telomerase-deficient mice (mTR2/2). In
the absence of telomerase activity, tumour incidence was gr
reduced (Greenberg et al, 1999), indicating that the gain of 
merase activity indeed favours tumour progression. On the o
hand, two observations contradict this conclusion and compli
the evaluation of telomerase as a target for therapeutic inter
tion. First, telomerase-deficient mice, when bred up to the s
generation, exhibit a significant tumour predisposition (Rudo
et al, 1999). Secondly, embryonic fibroblasts deficient for b
p53 and telomerase have a higher transformation rate 
p53-deficient cells (Chin et al, 1999a). In both cases, the lack o
telomerase activity correlates with a high rate of chromoso
damage and overall genomic instability. Telomere erosion is 
known to be recognized by DNA damage-sensing syst
resulting in the induction of p53 (Karlseder et al, 1999; Zha
et al, 1999). Therefore, it can be speculated, that in the abs
of p53, cells do not arrest upon DNA damage and continu
accumulate chromosomal abnormalities, thus promoting tum
progression.

Co-operative effects

Several groups have attempted to define the minimum numb
alterations that lead to the transformation of human cells. 
results are contradictory. Weinberg and co-workers succeed
transforming normal human epithelial cells and fibroblasts wit
combination of SV40 T antigen (to inactivate the two tumo
suppressors p53 and pRb), human telomerase (hTERT) 
activated ras (Hahn et al, 1999). In contrast, a previous repor
shown that the combination of hTERT, human papillomavi
E6/E7 oncoproteins (to inactivate p53 and pRb), and activate
is not sufficient to induce transformation of human primary c
(Morales et al, 1999). The reason for this discrepancy is not c
© 2000 Cancer Research Campaign
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Multistage tumorigenesis 3
however, it is possible that the sequence of events may be c
for full transformation.

Tumour angiogenesis

Already in the 1960s, Folkman and co-workers suggested
tumour growth critically depends on the formation of new blo
vessels (angiogenesis) (Folkman, 1990). Since then, it has
demonstrated that the angiogenic process is the result of a
balance between inducers and inhibitors (Folkman, 1995; Han
and Folkman, 1996). Hence, induction of tumour angiogenesis
be caused by the up-regulation of angiogenic factors or by the
of inhibitors. Among the angiogenic factors, vascular endoth
growth factor (VEGF-A) is frequently up-regulated during tumo
genesis, and its involvement in tumour progression has 
repeatedly proven (Ferrara, 1999). Notably, expression of VE
A is high in hypoxic tumour areas and it is promoted by 
hypoxia inducible factor 1α (HIF-1α), a transcription factor tha
regulates many other hypoxia-induced genes (Semenza, 199

Many naturally occurring and experimentally designed an
genesis inhibitors have been reported (Bouck et al, 1996). Am
the endogenous angiostatic factors, thrombospondin-1 (TSP-1
been identified as a direct transcriptional target of the tum
suppressor p53 (Dameron et al, 1994). By binding to its rece
CD36 on endothelial cells, TSP1 activates at least two dis
signal transduction pathways that lead to endothelial cell apop
(Jimenez et al, 2000). By virtue of its protease activity TSP-
also able to activate the latent form of TGF-β, known for its cyto-
static activity on endothelial cells (Crawford et al, 1998). Los
p53, therefore, also contributes to the onset of tumour an
genesis. A similar connection between p53 function and tum
angiogenesis has been recently demonstrated. It has been 
that p53 targets HIF-1α to degradation via mdm-2. Converse
upon loss of p53, HIF-1α is no more degraded, thus supporti
tumour angiogenesis and with it tumour growth (Ravi et al, 20
Of course, inhibition of tumour angiogenesis is a major therape
opportunity, and many of the compounds that are able to inte
with tumour angiogenesis are already in clinical trials (Ferrara
Alitalo, 1999).

Invasion and metastasis

The final stages of tumour progression are characterized b
invasion of tumour cells into their surrounding tissue and 
dissemination of tumour cells to form metastases in distant org
The molecular mechanisms underlying the cellular changes d
these events are still not fully understood, however, there 
general consensus that cell-to-cell and cell-to-substrate i
actions have to be profoundly altered during these final stage

E-cadherin is the prototypic cell–cell adhesion molec
involved in the formation of adherens junctions in epithelia. I
functionally inactivated in virtually all human epithelial canc
(carcinomas) by gene deletion or mutation, promoter silencing
proteolytic cleavage of the protein (Christofori and Semb, 19
Moreover, germline mutations in the E-cadherin gene predis
patients to diffuse and poorly differentiated gastric can
(Guilford et al, 1998). Experiments with a transgenic mouse m
for pancreatic β-cell carcinogenesis have demonstrated that
loss of E-cadherin is causally involved in the transition from
benign to a malignant tumour stage (Perl et al, 1998). Howev
remains elusive how the loss of E-cadherin-mediated cell–
© 2000 Cancer Research Campaign
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adhesion induces active tumour cell invasion and metastasis. 
the functional E-cadherin cell adhesion complex, among o
proteins, also contains β-catenin, it is conceivable that upon loss
E-cadherin function β-catenin is released, translocates to 
nucleus and together with LEF-1/TCF transcription fac
induces specific transcriptional programmes (Christofori 
Semb, 1999).

Mainly based on in vitro experiments in which forced expr
sion of proteases or inhibition of their activity altered the invas
ness of tumour cells, proteases have been assumed to p
functional role only in late stage tumour progression. 
expectedly, this scenario has changed. For example, the me
protease matrilysin (MMP-7) is already expressed in the e
stages of human colorectal cancer (Fingleton et al, 1999) an
been shown to be a direct target of the transcriptional com
β-catenin/TCF (Crawford et al, 1999). Notably, intestinal tum
genesis in a mouse strain carrying a mutated allele of the 
tumour suppressor gene (Min mouse) is dramatically repre
in the absence of matrilysin (Wilson et al, 1997). Surprisin
expression of stromelysin-1 (MMP-3) in the mammary gland
transgenic mice appears to be sufficient to induce full-blo
carcinogenesis, linking protease activity with tumour initiation 
possibly proliferation control (Sternlicht et al, 1999). On the o
hand, gelatinase A (MMP-2) and the uPA/uPAR system have 
shown to play an important role in tumour angiogenesis (Bro
et al, 1998; Rabbani, 1998; Coussens et al, 1999). Thus, pro
act at multiple stages during tumour development and ther
offer valuable targets for therapeutic intervention.

Mutator phenotypes

As discussed above, most of the events involved in the progre
to cancer represent genetic (mutational) changes that dir
affect proliferation, survival and transformation of tumour ce
However, changes in basic regulatory mechanisms, such as
repair or DNA methylation, also affect neoplastic transforma
by accelerating tumour progression.

In patients with hereditary non-polyposis colorectal can
(HNPCC), most tumours show microsatellite instability (MIN
Microsatellites are highly repetitive DNA sequences that are p
to accumulate errors (mismatches) during DNA replication
HNPCC patients, the failure to repair these mismatches is d
inactivating mutations in genes involved in mismatch repair, s
as MLH1 and MSH2 (Peltomaki and de la Chapelle, 19
Defects in the mismatch repair system can shift the spontan
mutation rate from 10–6 to 10–3–10–2, resulting in a so-called
mutator phenotype characterized by an increased frequen
mutations in tumour suppressor genes and oncogenes. In
microsatellites have been found within the coding regions of g
that are known to play important roles in cellular transformat
including APC, TGF-β receptor II, IGF-2 receptor, TCF-4, ba
and the mismatch repair genes themselves (Duval et al, 1
Schwartz et al, 1999). A failure to repair replication errors wi
these microsatellites invariably leads to a loss of the tum
suppressing functions of these genes.

In contrast to the genetic instability caused by DNA rep
defects (MIN), chromosomal instability (CIN) is characterized
chromosomal rearrangements, including large deletions, fus
and translocations (Lengauer et al, 1998). CIN is easily recog
in tumour cells by their aneuploid DNA content. On a molec
level, a first report indicates a correlation between aneuploidy
British Journal of Cancer (2000) 83(1), 1–5
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4 A Compagni and G Christofori
mutations in molecules responsible for chromosome separ
during mitosis (Cahill et al, 1998), however, a causal role of th
mutations in tumour initiation is still unclear. Evidence for 
involvement of chromosomal instability in cancer comes fr
studies on DNA repair in response to double-strand DNA bre
Breaks in the DNA double helix, caused for example by γ-irradia-
tion, usually induce activation of p53 via the kinases ATM/ATR
alternatively of the p53 family member p73 via ATM and c-a
resulting in growth arrest or apoptosis (Dasika et al, 1999). Se
molecules involved in this pathway, such as ATM, or proteins 
may be directly involved in the repair mechanisms, such
BRCA-1 and -2, are known tumour suppressor genes tha
frequently lost in several types of cancer. Knock-out mice d
cient for any of these genes develop tumours that exhibit gen
instability, including aneuploidy and chromosomal rearran
ments (Dasika et al, 1999). DNA breaks are not only induce
defects in sister chromatid separation during mitosis or by D
damaging agents. There are, in fact, sites in the genome that
high predisposition to DNA breaks (fragile sites). Coincidenta
another tumour suppressor gene, FHIT, is localized within on
these fragile sites, and errors in repairing DNA breaks are li
the cause of deletions observed in the FHIT gene (Huebner 
1998).

Besides mutation or deletion, tumour suppressor genes can
be disabled by silencing their promoters. Recent studies 
demonstrated that in many different tumour cell types CpG isla
in the promoter region of many tumour suppressor genes
hypermethylated, thereby preventing their expression (Toyota
Issa, 1999). The frequency of this CpG island methylator ph
type (CIMP) accounts for most of the tumour cases in which m
tions or chromosomal aberrations affecting tumour suppre
genes could not be detected. Tumour suppressor genes th
inactivated by CIMP include the von Hippel Lindau gene (VH
the cell cycle inhibitor p16/INK4a, and the cell adhesion molec
E-cadherin (Herman, 1999). Curiously, the mismatch repair g
MLH1 has also been found inactivated by hypermethylat
suggesting that CIMP may lead to the MIN mutator phenot
(Herman, 1999). Hypermethylation does not appear to b
random process, since some promoters seem to be predis
(Herman, 1999). However, the molecular mechanisms by w
promoter hypermethylation is achieved and how its specificit
acquired are not known. There is only indirect evidence that a
ations in DNA methylase (Mtase) activity could account for CIM
Mtase activity is frequently found to be increased in vari
human malignancies, including colon cancer, haematopo
cancers and lung cancer (Toyota and Issa, 1999). Moreover, in
tion of Mtase activity in mice, that by mutation of the APC tum
suppressor gene are predisposed to colon cancer (Min m
markedly reduced tumour incidence (Laird et al, 1995).

The general role of mutator phenotypes in carcinogenesi
particular in cancer types other than colon cancer, will be
interesting issue for the future.

CONCLUSION

Although still in its early days, molecular cancer research 
accomplished extraordinary progress in the understanding o
molecular mechanisms underlying tumour progression. In add
to tumour cell lines in culture, transgenic mouse models of tum
genesis have been instrumental in deciphering the mole
players causally involved in the transition from one tumour s
British Journal of Cancer (2000) 83(1), 1–5
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to the next. Moreover, basic research has begun to inte
knowledge about the role of exogenous stimuli, including envi
mental, occupational and dietary influences, into molecular p
ways involved in multistage tumorigenesis. Thus, it is exci
times not only for the full understanding of how tumours deve
but also for the discovery of novel appropriate targets 
therapeutic intervention.
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